International Conferences (Peer-reviewed)
-
A Personalized Language-Guided Video Summarization System
Using Text Semantic Matching,
T. Sugihara, S. Masuda, L. Xiao*, and T. Yamasaki,
The IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2026) ,
accepted [Demo], 2026.
-
Incorporating Semantic Visual Content into Click-Through Rate Prediction for Video Advertisements,
Y. Tanabe, S. Masuda, G. Ryu, N. Tanji, H. Seshime, L. Xiao, and T. Yamasaki,
The 17th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2025),
accepted, 2025.
-
Combining Non-Numerical Text and Numerical Sequences in LLM-based Survival Prediction,
Z. Zhou, G. Qian, X. Jiang, G. Wang, R. Lu, L. Xiao, and S. Tang,
The 22nd Pacific Rim International Conference Series on Artificial Intelligence (PRICAI 2025),
accepted, 2025.
-
ActRecognition-GPT: Utilizing Multimodal Large Language Models for Spatiotemporal Action Recognition in Nursery Videos,
K. Watanabe, S. Masuda, L. Xiao, and T. Yamasaki,
FM&LLM&GM 2025 (FG 2025 Workshop), pp. 1–10, 2025.
-
TourMLLM: A Retrieval-Augmented Multimodal Large Language Model for Multitask Learning in the Tourism Domain,
H. Yamanishi, L. Xiao* (corresponding author), and T. Yamasaki,
ICMR, pp. 1654–1663, 2025, Best paper award! News page!
-
Explainable AI for Image Aesthetic Evaluation Using Vision-Language Models,
S. Viriyavisuthisakul, S.n Yoshida, K. Shiohara, L. Xiao, and T. Yamasaki,
AIxMM, pp. 62–65, 2025.
-
LITA: LMM-guided Image-Text Alignment for Art Assessment,
T. Sunada, K. Shiohara, L. Xiao, and T. Yamasaki,
MMM 2025, pp. 268–281, 2025.
-
Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video,
T. Sugihara, S. Masuda, L. Xiao*, and T. Yamasaki,
ACM Multimedia Asia 2024, pp. 1–1, 2024.
[Code]
-
LLaVA-Tour: A Large-Scale Multimodal Model Specializing in Japanese Tourist Spot Prediction and Review Generation,
H. Yamanishi, L. Xiao*, and T. Yamasaki,
VCIP 2024, pp. 1–5, 2024. [Best Paper Candidate]
[Code]
-
A Multimodal Dataset and Benchmark for Tourism Review Generation,
H. Yamanishi, L. Xiao*, and T. Yamasaki,
ACM RecSys Workshop on Recommenders in Tourism (RecTour 2024), 2024.
-
SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning,
Z. R. Wang, L. Y. Xiang, L. Huang, J. F. Mao, L. Xiao, and T. Yamasaki,
ECCV 2024, pp. 217–233, 2024.
-
Adversarially Robust Continual Learning with Anti-forgetting Loss,
K. Mukai, S. Kumano, N. Michel, L. Xiao, and T. Yamasaki,
ICIP 2024, pp. 1085–1091, 2024.
-
E-ReaRev: Adaptive Reasoning for Question Answering over Incomplete Knowledge Graphs by Edge and Meaning Extensions,
X.T. Ye, L. Xiao, C. Zhang, and T. Yamasaki,
NLDB 2024, pp. 85–95, 2024.
-
Rethinking Momentum Knowledge Distillation in Online Continual Learning,
N. Michel, M. Wang, L. Xiao, and T. Yamasaki,
ICML 2024, pp. 35607–35622, 2024.
[Code]
-
Boosting Fine-grained Fashion Retrieval with Relational Knowledge Distillation,
L. Xiao and T. Yamasaki,
CVPR 2024 Workshop (CVFAD), pp. 8229–8234, 2024.
[Code]
-
Improving Plasticity in Online Continual Learning via Collaborative Learning,
M. Wang, N. Michel, L. Xiao, and T. Yamasaki,
CVPR 2024, pp. 23460–23469, 2024.
[Code]
-
HetSpot: Analyzing Tourist Spot Popularity with Heterogeneous Graph Neural Network,
H. Yamanishi, L. Xiao*, and T. Yamasaki,
IVSP 2024, pp. 111–120, 2024.
-
Toward a More Robust Fine-grained Fashion Retrieval,
L. Xiao, X. F. Zhang, and T. Yamasaki,
MIPR 2023, pp. 1–4, 2023.
[Code]
-
Learning Fashion Compatibility with Color Distortion Prediction,
L. Xiao, X. F. Zhang, and T. Yamasaki,
MIPR 2023, pp. 81–84, 2023.
-
Bridging the Capacity Gap for Online Knowledge Distillation,
M. Wang, H. Yu, L. Xiao, and T. Yamasaki,
MIPR 2023, pp. 1–4, 2023.
[Code]
-
SAT: Self-adaptive Training for Fashion Compatibility Prediction,
L. Xiao and T. Yamasaki,
ICIP 2022, pp. 2431–2435, 2022.
-
Surface Defect Detection Using Hierarchical Features,
L. Xiao, T. Huang, B. Wu, Y. Hu, and J. Zhou,
CASE 2019, pp. 1592–1596, 2019.
-
A Remote Health Condition Monitoring System Based on Compressed Sensing,
J. Liu, Y. Hu, Y. Lu, Y. Wang, L. Xiao, and K. Zheng,
MSCE 2017, pp. 262–266, 2017.